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Abstract. We reformulate the Cont-Bouchaud model of financial markets in terms of classical “super-spins”
where the spin value is a measure of the number of individual traders represented by a portfolio manager
of an investment agency. We then extend this simplified model by switching on interactions among the
super-spins to model the tendency of agencies getting influenced by the opinion of other managers. We also
introduce a fictitious temperature (to model other random influences), and time-dependent local fields to
model a slowly changing optimistic or pessimistic bias of traders. We point out close similarities between
the price variations in our model with N super-spins and total displacements in an N-step Levy flight. We
demonstrate the phenomena of natural and artificially created bubbles and subsequent crashes as well as
the occurrence of “fat tails” in the distributions of stock price variations.

PACS. 05.50.+q Lattice theory and statistics; Ising problems – 89.90.+n Other areas of general interest
to physicists

1 Introduction

The mathematical modelling of economic phenomena in
stock- and currency-markets has been going on for one
century [1–4]. However, recently physicists have begun ap-
plying the concepts and techniques of statistical physics
to understand the dynamical behaviour of these “complex
adaptive systems” by developing models which are simi-
lar, at least in spirit, to the statistical mechanical mod-
els of interacting microscopic constituents of macroscopic
samples of matter. The constituent elements in these “mi-
croscopic” models of markets represent the individual in-
vestors and investment agencies [5–12].

Cont and Bouchaud (CB) [13] have suggested one of
the simplest models of financial markets; this model has
led to interesting conclusions regarding the “microscopic”
origin of the “herd behaviour”, “bubbles” and “crashes”
at the stock markets. There exists a close relation between
this theory and the theory of percolation [14] (see also [15];
for a short review of microscopic models see [16]). By sim-
plifying the CB model through a reformulation and, then,
extending it further, in this paper we develop a more de-
tailed model of stock market; this is formulated in terms
of interacting super-spins, which are maintained at a fic-
titious temperature and which evolve with time following
a stochastic dynamics, in the presence of time-dependent
local fields. We explain the motivations for these refor-
mulations and extensions of the CB model and examine
the corresponding consequences by analyzing the tempo-
ral fluctuations in the changes of stock prices.
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2 The models

2.1 The CB model

In the CB model [13], pairs of individual investors are
linked randomly with probability p and the clusters of
linked individuals thus formed are identified as “coali-
tions” of investors; all the members of each coalition make
the same investment decision (i.e., whether to buy or to
sell or not to trade). Therefore, each cluster may corre-
spond, for example, to funds managed by the same port-
folio manager.

Since, in the original formulation of this model [13],
a link is allowed to form between any pair of investors,
the clustering corresponds to bond percolation in infinite-
dimensional space [14]. Isolated individual investors may
be viewed as clusters of size one. Once the individual in-
vestors form the clusters, the time-evolution of the clusters
proceeds as follows: each cluster randomly decides to buy
(with probability a), to sell (with probability a) or not to
trade (with probability 1−2a) during each unit time inter-
val. The change of the stock price is defined to be propor-
tional to the difference between the demand and supply. If
n+
s is the number (per investor) of the buying clusters and
n−s is the number (per investor) of the selling clusters then
the price change ∆ is given by ∆ ∝ [

∑
s s n

+
s −

∑
s s n

−
s ].

2.2 The super-spin model

In this paper we first reformulate the CB model in terms
of “superspins”. The system consists of super-spins Si; the
magnitude |Si| of the super-spins are drawn from a pre-
determined probability distribution P (|S|) and each spin
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Fig. 1. (a) After rescaling the heights of the distributions of the price changes to unity, the distributions are shown on a semi-log
plot. The symbols (�), (�) and (×) correspond to N = 102, 103 and 5000, respectively (all for α = 3/2) while the symbol (+)
correspond to α = 7/2, N = 103. For all the curves, a = 0.05. (b) After rescaling the widths of the distributions in Figure 1a
also to unity, the distributions are shown on a log-log plot using the same symbols as in Figure 1a. The input distribution (1),
with α = 3/2, has been represented by the straight line. (c) After rescaling the heights of the distributions of the price changes
to unity, the scaled distributions are shown on a semi-log plot. The symbols (. . . ), (�) and + correspond to a = 0.5, 0.33, 0.05,
respectively (all for N = 1000). For comparison, the data for a CB model system of 71 × 71 traders, run up to 1000 iterations
with a = 1/3 and averaged over 106 samples, are shown with a line similar to Figure 3 of Stauffer and Penna [15].

can be in one of the three possible states, viz., +|Si|, 0,
−|Si|. These superspins are analogues of the clusters in
the CB model and the magnitude of the spin corresponds
to the cluster size in the CB model. At every discrete
time step, each of the super-spins chooses the state +|Si|
with probability a, the state −|Si| with probability a and
the state 0 with probability 1 − 2a; this is identical to
the rule of time evolution of the clusters of investors in
the CB model. The total number of individual investors
is
∑N
i=1 |Si| and the price change, which is defined to be

proportional to the difference in the total demand and to-
tal supply, is thus proportional to the total magnetization

M =
∑N
i=1 Si where N is the total number of super-spins

(i.e., the total number of clusters of investors).

3 Results and discussion

Using this reformulated version of the CB model, together
with the distribution

P (|S|) ∝ |S|−(1+α), (1)

we have computed the distributions of stock price vari-
ations for several different values of a and N . This dis-
tribution is non-Gaussian, irrespective of the number of
investment agencies (see Fig. 1a; α = 3/2 in Fig. 1).

The super-spin model, as formulated above, is closely
related to Levy flights. By Levy flight one means a random
walk where the the probability p(`) of a jump of size ` is
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given by the distribution [17,18]

p(`) ∝ `−(1+α) with 0 < α < 2. (2)

Since the form (1) of P (|S|) in our model is identical to
that of p(`) for a Levy flight, the magnetization of N
super-spins (i.e., the price change of the stocks) is the
analogue of the total displacement after N steps of a par-
ticle performing Levy-flights; this is similar to the con-
cepts introduced originally by Mandelbrot [3] and also to
the stochastic multiplicative process of Levy and Solomon
[4]. Therefore, P (M), the distribution of the stock price
variations in our model may appear to be the distribu-

tion P
(N)
LF (x) of the total displacements x of N -step Levy

flights. However, that is not true as there is a subtle dif-
ference between the two processes arising from the fact
that, in our model, the spin configuration {S} (analogue
of the N displacements of the Levy flight) is generated
from another configuration by using the rule that a spin
Si decides to be in the state ±|Si| and 0 with the prob-
abilities a and 1− 2a, respectively. Therefore [19], if n is
the number of non-zero superspins in a configuration {S},

P (M) =
N∑
n=0

(
N
n

)
(2a)n(1− 2a)N−nP (n)(M), (3)

where P (1)(M) is identical to the distribution (1) for
P (|S|) and P (n)(M) represents the distribution obtained
by n convolutions of P (|S|) with itself. Taking Fourier
transform of both sides of (3) we get

P̂ (k) =
N∑
n=0

(
N
n

)
(2a)n(1− 2a)N−nP̂ (n)(k) (4)

where P̂ (k) and P̂ (n)(k) are the Fourier transforms of
P (M) and P (n)(M), respectively. Now,

P̂ (n)(k) = [P̂ (1)(k)]n (5)

where P̂ (1)(k) is nothing but the Fourier transform of (1).
Inserting (5) into (4) we get a series that can be summed
analytically and, hence,

P̂ (k) = [2aP̂ (1)(k) + (1− 2a)]N . (6)

The expression of P̂ (1)(k) is known exactly. For the sim-
plicity of analysis we consider the case where α < 1. Then,
for small k (i.e., large price variations)

P̂ (1)(k) = 1− C|k|α + higher order terms. (7)

Inserting (7) into (6) we get

P̂ (k) = 1− 2aNC|k|α + higher order terms, (8)

which implies that the tail of the distribution ofM has the
same exponent 1 + α as our input in equation (1). Next,

we consider the case where 1 < α < 2. In this case, (7) is
replaced by

P̂ (1)(k) = 1− ikg − C|k|α + higher order terms. (9)

Inserting (9) into (6) now we get

P (k) = exp[−2Na[ikg + C|k|α + higher order terms]]
(10)

which also implies that the tail of the distribution ofM has
the same exponent 1+α as our input in equation (1). This
is, indeed, consistent with our numerical data obtained
from computer simulation (see Fig. 1b) and is trivial in
the limit a→ 0.

Moreover, from the above analysis one would expect
the tail of the distribution of the stock price variations in
our super-spin model to have the same exponent 1 + α
as our input in equation (1) for all values of a. This is,
indeed, what we observed by replotting our data on a log-
log plot (not shown in any figure) after scaling the widths
of all the non-Gaussian distributions of Figure 1c to unity.
In contrast to these features of P (M) in our super-spin
formulation, the distribution of price variations in the CB
model is close to a Gaussian for sufficiently large a, at
least when formulated on finite-dimensional lattices (see
Fig. 1c) although it is non-Gaussian with a power-law tail
for small a.

Furthermore, equation (10) also suggests that, if the
distribution P (|S|) is given by the equation (1) then, in
the asymptotic regime of large M , the amplitude of the
tails in the distribution P (M) should scale linearly with a
for small a on a semi-log plot. The lack of good agreement
between this theoretical prediction and our numerical data
is most probably caused by the fact that the true asymp-
totic regime may be far beyond the largest M plotted in
this figure. It is also worth pointing out here that for small
k (i.e., for large variation of the prices) the dependence
of P (M) on a and N enters through the product aN and
this is consistent with our observation.

In order to model the tendency of traders (individual
as well as portfolio management agencies) getting influ-
enced by the opinion of other traders, we now “switch
on” interactions among the super-spins. The super-spins
are not located on the sites of any lattice. We define the
“total opinion” Hi gathered by the ith trader, because of
all the other traders, as

Hi =
∑
j 6=i

JijSj (11)

where Jij is a measure of the strength of the mutual influ-
ence between the pair of traders (individual or investment
agencies) labelled by i and j; the sum on the right hand
side of (11) is to be carried out over all the N − 1 super-
spins excluding i. If Jij > 0 (Jij < 0), then a buying jth
trader would encourage the ith trader to buy (sell), and
vice versa. Note that, in the language of the spin models
of magnetism, Jij is the strength of the exchange inter-
action between spin-pairs and Hi is the Weiss molecular
field (or, internal field).
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For our discussion here, we consider only the natural
choice, namely, Jij > 0 for all pairs (ij). Moreover, for
simplicity, we consider Jij = J , a constant independent of
i and j, for all the spin-pairs, so that the “total opinion”
gathered by the i-trader can be written as

Hi = J
∑
j 6=i

Sj . (12)

Note that Hi = 0 describes a balance of optimistic and
pessimistic traders whereas Hi > 0 (Hi < 0) correspond
to predominant optimism (pessimism). The motivation for
including not only the sign of Sj [20,21], but also its mag-
nitude on the right hand side of (12) comes from the fact
that, usually, the larger is a trading agency the stronger
is its effect on shaping the market opinion. Although, in
real markets, this effect of Sj may be nonlinear, i.e., not
proportional to the first power of the size of the trading
agency, we assume a linear dependence for the sake of
simplicity.

At this stage of formulation of our model, every trader
may be regarded as a “noise trader” who has no own
opinion and would decide whether to buy or sell depend-
ing on whether the “total opinion” gathered is positive or
negative. Besides, the larger is the magnitude of Hi the
stronger will be the corresponding opinion influencing the
decision of the ith “noise trader”. We define the “disagree-
ment function” Ei of the ith noise trader as

Ei = −SiHi = −J
∑
j 6=i

SiSj ; (13)

all “noise traders” would like to minimize the correspond-
ing disagreement function. In the language of spin models
of magnetism, Ei is the energy of the ith spin because of
its interactions with the other spins.

If all the spins minimized their energies the system of
super-spins would end up in a ferromagnetic state. Equiv-
alently, if all the traders minimized their disagreement
defined above, i.e., if all the investors make decision only
depending on what other investors are doing (and mini-
mize their own disagreement accordingly) the market will
end up in either of two possible states where all the traders
will either like to buy or sell. However, this does never
happen in any real financial markets because the traders
neither blindly follow the market opinion nor can always
manage to follow the market opinion (even if they wanted
to) because of so many reasons other than the influence
of all other traders. In order to model these random in-
fluences, which are not explicitly included in our model,
we introduce a fictitious temperature T . Since, in real-
ity, the average price change usually vanishes, and since
price change corresponds to the total magnetization in
our model, we choose a sufficiently large magnitude of T
so that the magnetization fluctuates in time about the
zero mean value. Therefore, we modify the dynamics of
the model as follows: a super-spin picks up the states
+|Si|,−|Si| and 0 with the probabilities a, a and 1 − 2a,
respectively and, then it is allowed to make a transition
from its current state to the state it has picked up with

Fig. 2. The continuous line corresponds to our simplified
model before switching on the temperature and local fields.
The symbol (�) corresponds to a situation where all the super-
spins, subjected to time-independent random local fields of
magnitude NJ , are maintained at a fictitious T (� NJ) so
that the time-averaged M vanishes. Both the height and height
of the distributions have been scaled to unity. The common
parameters are N = 103 and a = 0.05.

the probability e−∆Ei/(kBT ) where ∆E is the change in its
energy (i.e., the change of disagreement in the language
of economics) associated with this transition.

Finally, we further extend this reformulated model to
incorporate “fundamentalist traders” who form at least a
part of their opinion (i.e., optimistic or pessimistic bias)
towards the stocks of a company on the basis of an analysis
of the fundamentals of that company. If hi is the “indi-
vidual bias” of the ith investor, then the corresponding
“disagreement function” is given by

Ei = −Si(Hi + hi); (14)

where a positive hi corresponds to optimism while a nega-
tive hi indicates pessimism of the trader. The dependence
of hi on i implies that different fundamentalist trading
agencies can have different evaluations of the fundamental
value. However, in contrast to the time-independent local
fields considered usually in spin models, both the magni-
tude as well as the sign of the “individual bias” hi of the
traders can change with time. We study the effects of this
time-dependent “individual bias” on the price variations.

When every super-spin is subjected to a random local
field which is positive and negative with equal probabil-
ity but has the same magnitude, the system represents
a market where every trading agent is a fundamentalist
but the biased opinion of the agents happen to be ran-
domly optimistic or pessimistic with equal probability. In
such a situation we find that the fluctuations in the price
variation can be much stronger even when |hi| is not too
strong (merely comparable to T ). Nevertheless, the quali-
tative nature of the price variations in a market where all
the traders are fundamentalist is no different from that in
a market where every trading agent is a “noise trader” so
long as the fundamentalists have rigid opinions which do
not change with time (see Fig. 2).



D. Chowdhury and D. Stauffer: A generalized spin model of financial markets 481

-0.4

-0.2

0

0.2

0.4

0 200 400 600 800 1000

P
ric

e 
ch

an
ge

Time

Fig. 3. The fluctuations of the price changes (a) in the CB
model and (b) in a situation where all of the randomly cho-
sen 50% of the super-spins are subjected to time-dependent
local fields (whose magnitude is much larger than T but sign is
same everywhere) which flip when price change per individual
investor goes out of the window −0.4 ≤M ≤ 0.4.

We now consider a market where 50% of the trad-
ing agents are fundamentalists (all with very strong bias
towards the stocks of the company under consideration)
while the other trading agents are all noise traders. In
other words, to begin with, each of the randomly chosen
50% of the agencies is subject to a positive local field of
sufficiently high magnitude. In this case, we also impose
the condition that when the price variation becomes too
high or too low (i.e., cross a tolerance window) the funda-
mentalists reverse their bias. This is implemented in our
super-spin model by “flipping” the direction of each of
the local fields. Thus, the local fields switch from positive
to negative when M rises above a positive value which is
chosen a priori, say 0.4, and reverse switching from nega-
tive to positive local fields take place when M falls below
−0.4. The occurrence of larger values of |M | in this situ-
ation (see Fig. 3) implies that the fundamentalist traders
with apparently very strong optimistic bias can push up
the demand for the stocks of a company, even if they repre-
sent a fraction of all traders, but when they reverse their
opinion, it triggers a rush for selling the stocks. In this
way the nearly periodic variation of Figure 3b is produced,
showing that this last variant of the model is unrealistic.
The qualitatively different distribution of price variations
observed in such cases (Fig. 4) indicates that the statis-
tics of bubbles and crashes created by the strong bias of a
few fundamentalists would be very different from those of
commonly encountered ones which are, thus, dominated
by less rational behaviour.

4 Summary and conclusion

In this paper we have developed a model of stock market
which may be viewed as a model of interacting super-
spins which are maintained at a fictitious temperature
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Fig. 4. The distribution of the price changes, corresponding
to the the situation in Figure 3b, are shown, after scaling the
probability for zero price change to unity.

and are subjected to time-dependent local fields, where
the stochastic dynamics of the super-spins describes the
temporal evolution of the decisions (i.e., whether to buy,
or sell or not to trade) of individual investors and invest-
ment agencies; this dynamics, in turn, leads to the tem-
poral fluctuations of the stock price. We have studied the
nature of these fluctuations of the stock price and the phe-
nomena of bubbles and crashes.

In the CB model the probability p, with which indi-
vidual traders are linked to form clusters, is tuned to be
identical with (or very close to) the corresponding per-
colation threshold thereby guaranteeing a power-law dis-
tribution of the cluster sizes which, in turn, leads to the
desired behaviour of the price variations. In our model the
distribution of the superspins is directly tuned to a power
law. It would be interesting to develop a model which can
“self-organize” so as to produce coalitions whose sizes are
distributed according to the desired power law.

We thank D. Sornette and T. Lux for communicating useful
informations and the Alexander von Humboldt Foundation for
support.
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